3.197 \(\int \frac{\tanh ^2(x)}{\sqrt{a+b \text{sech}^2(x)}} \, dx\)

Optimal. Leaf size=60 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{a} \tanh (x)}{\sqrt{a-b \tanh ^2(x)+b}}\right )}{\sqrt{a}}-\frac{\tan ^{-1}\left (\frac{\sqrt{b} \tanh (x)}{\sqrt{a-b \tanh ^2(x)+b}}\right )}{\sqrt{b}} \]

[Out]

-(ArcTan[(Sqrt[b]*Tanh[x])/Sqrt[a + b - b*Tanh[x]^2]]/Sqrt[b]) + ArcTanh[(Sqrt[a]*Tanh[x])/Sqrt[a + b - b*Tanh
[x]^2]]/Sqrt[a]

________________________________________________________________________________________

Rubi [A]  time = 0.192646, antiderivative size = 60, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.412, Rules used = {4141, 1975, 483, 217, 203, 377, 206} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{a} \tanh (x)}{\sqrt{a-b \tanh ^2(x)+b}}\right )}{\sqrt{a}}-\frac{\tan ^{-1}\left (\frac{\sqrt{b} \tanh (x)}{\sqrt{a-b \tanh ^2(x)+b}}\right )}{\sqrt{b}} \]

Antiderivative was successfully verified.

[In]

Int[Tanh[x]^2/Sqrt[a + b*Sech[x]^2],x]

[Out]

-(ArcTan[(Sqrt[b]*Tanh[x])/Sqrt[a + b - b*Tanh[x]^2]]/Sqrt[b]) + ArcTanh[(Sqrt[a]*Tanh[x])/Sqrt[a + b - b*Tanh
[x]^2]]/Sqrt[a]

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 483

Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^(n_))^(q_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Dist[e^n/b, Int[
(e*x)^(m - n)*(c + d*x^n)^q, x], x] - Dist[(a*e^n)/b, Int[((e*x)^(m - n)*(c + d*x^n)^q)/(a + b*x^n), x], x] /;
 FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1] && IntBinomialQ[a, b
, c, d, e, m, n, -1, q, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tanh ^2(x)}{\sqrt{a+b \text{sech}^2(x)}} \, dx &=\operatorname{Subst}\left (\int \frac{x^2}{\left (1-x^2\right ) \sqrt{a+b \left (1-x^2\right )}} \, dx,x,\tanh (x)\right )\\ &=\operatorname{Subst}\left (\int \frac{x^2}{\left (1-x^2\right ) \sqrt{a+b-b x^2}} \, dx,x,\tanh (x)\right )\\ &=-\operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b-b x^2}} \, dx,x,\tanh (x)\right )+\operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \sqrt{a+b-b x^2}} \, dx,x,\tanh (x)\right )\\ &=\operatorname{Subst}\left (\int \frac{1}{1-a x^2} \, dx,x,\frac{\tanh (x)}{\sqrt{a+b-b \tanh ^2(x)}}\right )-\operatorname{Subst}\left (\int \frac{1}{1+b x^2} \, dx,x,\frac{\tanh (x)}{\sqrt{a+b-b \tanh ^2(x)}}\right )\\ &=-\frac{\tan ^{-1}\left (\frac{\sqrt{b} \tanh (x)}{\sqrt{a+b-b \tanh ^2(x)}}\right )}{\sqrt{b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a} \tanh (x)}{\sqrt{a+b-b \tanh ^2(x)}}\right )}{\sqrt{a}}\\ \end{align*}

Mathematica [A]  time = 0.168394, size = 107, normalized size = 1.78 \[ \frac{\text{sech}(x) \sqrt{a \cosh (2 x)+a+2 b} \left (\frac{\tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{a} \sinh (x)}{\sqrt{a \cosh (2 x)+a+2 b}}\right )}{\sqrt{a}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{b} \sinh (x)}{\sqrt{a \cosh (2 x)+a+2 b}}\right )}{\sqrt{b}}\right )}{\sqrt{2} \sqrt{a+b \text{sech}^2(x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tanh[x]^2/Sqrt[a + b*Sech[x]^2],x]

[Out]

((-(ArcTan[(Sqrt[2]*Sqrt[b]*Sinh[x])/Sqrt[a + 2*b + a*Cosh[2*x]]]/Sqrt[b]) + ArcTanh[(Sqrt[2]*Sqrt[a]*Sinh[x])
/Sqrt[a + 2*b + a*Cosh[2*x]]]/Sqrt[a])*Sqrt[a + 2*b + a*Cosh[2*x]]*Sech[x])/(Sqrt[2]*Sqrt[a + b*Sech[x]^2])

________________________________________________________________________________________

Maple [F]  time = 0.115, size = 0, normalized size = 0. \begin{align*} \int{ \left ( \tanh \left ( x \right ) \right ) ^{2}{\frac{1}{\sqrt{a+b \left ({\rm sech} \left (x\right ) \right ) ^{2}}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^2/(a+b*sech(x)^2)^(1/2),x)

[Out]

int(tanh(x)^2/(a+b*sech(x)^2)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh \left (x\right )^{2}}{\sqrt{b \operatorname{sech}\left (x\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^2/(a+b*sech(x)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)^2/sqrt(b*sech(x)^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 3.04135, size = 8377, normalized size = 139.62 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^2/(a+b*sech(x)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(a)*b*log((a*b^2*cosh(x)^8 + 8*a*b^2*cosh(x)*sinh(x)^7 + a*b^2*sinh(x)^8 - 2*(a*b^2 - b^3)*cosh(x)^6
 + 2*(14*a*b^2*cosh(x)^2 - a*b^2 + b^3)*sinh(x)^6 + 4*(14*a*b^2*cosh(x)^3 - 3*(a*b^2 - b^3)*cosh(x))*sinh(x)^5
 + (a^3 + 4*a^2*b + 9*a*b^2)*cosh(x)^4 + (70*a*b^2*cosh(x)^4 + a^3 + 4*a^2*b + 9*a*b^2 - 30*(a*b^2 - b^3)*cosh
(x)^2)*sinh(x)^4 + 4*(14*a*b^2*cosh(x)^5 - 10*(a*b^2 - b^3)*cosh(x)^3 + (a^3 + 4*a^2*b + 9*a*b^2)*cosh(x))*sin
h(x)^3 + a^3 + 2*(a^3 + 3*a^2*b)*cosh(x)^2 + 2*(14*a*b^2*cosh(x)^6 - 15*(a*b^2 - b^3)*cosh(x)^4 + a^3 + 3*a^2*
b + 3*(a^3 + 4*a^2*b + 9*a*b^2)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*
sinh(x)^6 - 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 - b^2)*sinh(x)^4 + 4*(5*b^2*cosh(x)^3 - 3*b^2*cosh(x))*sinh(x
)^3 - (a^2 + 4*a*b)*cosh(x)^2 + (15*b^2*cosh(x)^4 - 18*b^2*cosh(x)^2 - a^2 - 4*a*b)*sinh(x)^2 - a^2 + 2*(3*b^2
*cosh(x)^5 - 6*b^2*cosh(x)^3 - (a^2 + 4*a*b)*cosh(x))*sinh(x))*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2
*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*a*b^2*cosh(x)^7 - 3*(a*b^2 - b^3)*cosh(x)^5 + (a^3 + 4
*a^2*b + 9*a*b^2)*cosh(x)^3 + (a^3 + 3*a^2*b)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^
4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) - 2*a*sqrt(-
b)*log(-((a - b)*cosh(x)^4 + 4*(a - b)*cosh(x)*sinh(x)^3 + (a - b)*sinh(x)^4 + 2*(a + 3*b)*cosh(x)^2 + 2*(3*(a
 - b)*cosh(x)^2 + a + 3*b)*sinh(x)^2 - 2*sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-b)*sqrt
((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a - b)*cosh(x)^3 + (
a + 3*b)*cosh(x))*sinh(x) + a - b)/(cosh(x)^4 + 4*cosh(x)*sinh(x)^3 + sinh(x)^4 + 2*(3*cosh(x)^2 + 1)*sinh(x)^
2 + 2*cosh(x)^2 + 4*(cosh(x)^3 + cosh(x))*sinh(x) + 1)) + sqrt(a)*b*log(-(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3
+ a*sinh(x)^4 + 2*(a + b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a + b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sin
h(x) + sinh(x)^2 + 1)*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh
(x)^2)) + 4*(a*cosh(x)^3 + (a + b)*cosh(x))*sinh(x) + a)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)))/(a*b),
-1/4*(4*a*sqrt(b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(b)*sqrt((a*cosh(x)^2 + a
*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*si
nh(x)^4 + 2*(a + 2*b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*(a*cosh(x)^3 + (a + 2*b)*cosh(x))*
sinh(x) + a)) - sqrt(a)*b*log((a*b^2*cosh(x)^8 + 8*a*b^2*cosh(x)*sinh(x)^7 + a*b^2*sinh(x)^8 - 2*(a*b^2 - b^3)
*cosh(x)^6 + 2*(14*a*b^2*cosh(x)^2 - a*b^2 + b^3)*sinh(x)^6 + 4*(14*a*b^2*cosh(x)^3 - 3*(a*b^2 - b^3)*cosh(x))
*sinh(x)^5 + (a^3 + 4*a^2*b + 9*a*b^2)*cosh(x)^4 + (70*a*b^2*cosh(x)^4 + a^3 + 4*a^2*b + 9*a*b^2 - 30*(a*b^2 -
 b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*a*b^2*cosh(x)^5 - 10*(a*b^2 - b^3)*cosh(x)^3 + (a^3 + 4*a^2*b + 9*a*b^2)*co
sh(x))*sinh(x)^3 + a^3 + 2*(a^3 + 3*a^2*b)*cosh(x)^2 + 2*(14*a*b^2*cosh(x)^6 - 15*(a*b^2 - b^3)*cosh(x)^4 + a^
3 + 3*a^2*b + 3*(a^3 + 4*a^2*b + 9*a*b^2)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x
)^5 + b^2*sinh(x)^6 - 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 - b^2)*sinh(x)^4 + 4*(5*b^2*cosh(x)^3 - 3*b^2*cosh(
x))*sinh(x)^3 - (a^2 + 4*a*b)*cosh(x)^2 + (15*b^2*cosh(x)^4 - 18*b^2*cosh(x)^2 - a^2 - 4*a*b)*sinh(x)^2 - a^2
+ 2*(3*b^2*cosh(x)^5 - 6*b^2*cosh(x)^3 - (a^2 + 4*a*b)*cosh(x))*sinh(x))*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)
^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*a*b^2*cosh(x)^7 - 3*(a*b^2 - b^3)*cosh(x)^5
+ (a^3 + 4*a^2*b + 9*a*b^2)*cosh(x)^3 + (a^3 + 3*a^2*b)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 1
5*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) -
sqrt(a)*b*log(-(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*(a + b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a
 + b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x
)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(a*cosh(x)^3 + (a + b)*cosh(x))*sinh(x) + a)/(
cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)))/(a*b), -1/2*(sqrt(-a)*b*arctan(sqrt(2)*(b*cosh(x)^2 + 2*b*cosh(x)
*sinh(x) + b*sinh(x)^2 + a)*sqrt(-a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x)
 + sinh(x)^2))/(a*b*cosh(x)^4 + 4*a*b*cosh(x)*sinh(x)^3 + a*b*sinh(x)^4 - (a^2 + 3*a*b)*cosh(x)^2 + (6*a*b*cos
h(x)^2 - a^2 - 3*a*b)*sinh(x)^2 - a^2 + 2*(2*a*b*cosh(x)^3 - (a^2 + 3*a*b)*cosh(x))*sinh(x))) + sqrt(-a)*b*arc
tan(sqrt(2)*sqrt(-a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/(
a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 + a)) + a*sqrt(-b)*log(-((a - b)*cosh(x)^4 + 4*(a - b)*cosh(x)
*sinh(x)^3 + (a - b)*sinh(x)^4 + 2*(a + 3*b)*cosh(x)^2 + 2*(3*(a - b)*cosh(x)^2 + a + 3*b)*sinh(x)^2 - 2*sqrt(
2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-b)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x
)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a - b)*cosh(x)^3 + (a + 3*b)*cosh(x))*sinh(x) + a - b)/(cosh(x)^4
+ 4*cosh(x)*sinh(x)^3 + sinh(x)^4 + 2*(3*cosh(x)^2 + 1)*sinh(x)^2 + 2*cosh(x)^2 + 4*(cosh(x)^3 + cosh(x))*sinh
(x) + 1)))/(a*b), -1/2*(sqrt(-a)*b*arctan(sqrt(2)*(b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 + a)*sqrt(-
a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/(a*b*cosh(x)^4 + 4*
a*b*cosh(x)*sinh(x)^3 + a*b*sinh(x)^4 - (a^2 + 3*a*b)*cosh(x)^2 + (6*a*b*cosh(x)^2 - a^2 - 3*a*b)*sinh(x)^2 -
a^2 + 2*(2*a*b*cosh(x)^3 - (a^2 + 3*a*b)*cosh(x))*sinh(x))) + 2*a*sqrt(b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x
)*sinh(x) + sinh(x)^2 - 1)*sqrt(b)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) +
 sinh(x)^2))/(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*(a + 2*b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a
 + 2*b)*sinh(x)^2 + 4*(a*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a)) + sqrt(-a)*b*arctan(sqrt(2)*sqrt(-a)*sqr
t((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/(a*cosh(x)^2 + 2*a*cosh(x
)*sinh(x) + a*sinh(x)^2 + a)))/(a*b)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh ^{2}{\left (x \right )}}{\sqrt{a + b \operatorname{sech}^{2}{\left (x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)**2/(a+b*sech(x)**2)**(1/2),x)

[Out]

Integral(tanh(x)**2/sqrt(a + b*sech(x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh \left (x\right )^{2}}{\sqrt{b \operatorname{sech}\left (x\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^2/(a+b*sech(x)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tanh(x)^2/sqrt(b*sech(x)^2 + a), x)